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a b s t r a c t

Solid Oxide Fuel Cell (SOFC) integrated into Micro Gas Turbine (MGT) is a multivariable nonlinear and
strong coupling system. To enable the SOFC and MGT hybrid power system to follow the load profile accu-
rately, this paper proposes a self-tuning PID decoupling controller based on a modified output–input
feedback (OIF) Elman neural network model to track the MGT output power and SOFC output power.
During the modeling, in order to avoid getting into a local minimum, an improved particle swarm opti-
olid Oxide Fuel Fell (SOFC)
icro Gas Turbine (MGT)
utput–input feedback (OIF)
lman neural network
article swarm optimization (PSO)
roportional-integral-derivative (PID)
ecoupling control

mization (PSO) algorithm is employed to optimize the weights of the OIF Elman neural network. Using
the modified OIF Elman neural network identifier, the SOFC/MGT hybrid system is identified on-line, and
the parameters of the PID controller are tuned automatically. Furthermore, the corresponding decou-
pling control law is achieved by the conventional PID control algorithm. The validity and accuracy of the
decoupling controller are tested by simulations in MATLAB environment. The simulation results verify
that the proposed control strategy can achieve favorable control performance with regard to various load
disturbances.
. Introduction

With increasing global energy needs and environmental con-
erns, interest in new energy sources is growing. Solid Oxide Fuel
ell (SOFC) integrated in Micro Gas Turbine (MGT) is a promising
nd preferred method for generating electric power in the future,
aving a high efficiency and low pollution.

Transients in the load may have a significant impact on the life
f the SOFC/MGT hybrid power system. One of the reasons is that
oad transients often involve significant peaks in power relative to
he steady-state load. Therefore, the primary control goal for the
OFC/MGT hybrid system is to allow the power plant to deliver the
esired power output.

There have been very few reports on controlling the power of
he SOFC/MGT hybrid system during the last several decades. In
efs. [1,2], a dynamic model was presented for control of the inte-
rated SOFC and turbine hybrid system and the power supplied
y the SOFC system was controlled by manipulating the fuel. In

ef. [3], an unstable power output was observed due to the fluc-
uation of gas composition in the fuel. A specially designed fuel
ontroller succeeded not only in allowing the hybrid system to fol-
ow a step change of power demand, but also maintained the system
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E-mail address: xj2 wu@hotmail.com (X.-J. Wu).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2010.07.095
© 2010 Elsevier B.V. All rights reserved.

power output stable. However, the SOFC/MGT hybrid system is a
multivariable and strong coupling nonlinear system. This coupling
affects the effectiveness of a specific loop controller on the corre-
sponding output, and in some case, may become serious and cause
many difficulties to the control system design. How the power sys-
tem is decoupled and practical controllers are designed does not
feature currently in the open literature.

In recent years, various linearization and decoupling methods
have been presented to handle this problem. The usual methods
are based on differential geometry method, which solve a group
of differential equations and linearize nonlinear system with state
feedback [4–6]. However, the SOFC/MGT hybrid system is an uncer-
tain nonlinear system. It is very difficult to describe such a system
with a precise mathematical model.

Neural networks are considered as an attractive structure to
establish the mathematical relationship of the dynamic system
based on the input–output data. As a kind of recurrent neu-
ral network, the OIF Elman neural network is more ascendant
than the static neural network such as BP and RBF neural net-
work on the dynamic characteristic. Thereby, it is now widely
used in the areas of system identification, nonlinear control and

prediction control [7–10]. Furthermore, based on the modified
OIF Elman neural network, an adaptive proportional-integral-
derivative (PID) decoupling control scheme is proposed to control
the SOFC output power and MGT output power. The tradi-
tional PID controller is widely applicable in many fields due to

dx.doi.org/10.1016/j.jpowsour.2010.07.095
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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Nomenclature

pj gas pressure at state j (atm)
Wj gas mole flowrate at state j (mol s−1)
Wj,i mole flowrate of gas i at state j (mol s−1)
xj molar fraction of gas i
xj,i molar fraction of gas i at state j
� moment of inertia (kg m2)
R gas constant (8.314 J mol−1 K−1)
Van anode volume (cm3)
Vca cathode volume (cm3)
i SOFC stack current (A)
Q3 enthalpy of gas i at state j (J mol−1)
εt turbine pressure ratio
�t turbine efficiency
h̄j,i gas enthalpy at state j (J mol−1)
Tj gas temperature at state j (K)
N SOFC number
Pac stack AC output power (kW)
�st stack output voltage (V)
Pst stack output power (kW)
PMGT MGT power (kW)
Pt turbine power (kW)
�ac DC/AC conversion efficiency
�dc DC/DC conversion efficiency
�m turbine mechanical efficiency
W1 air flowrate (mol s−1)
W6 fuel flowrate (mol s−1)
n rotational speed (rpm)
�r compressor isentropic efficiency
εr compressor pressure ratio
Ts SOFC stack temperature (K)
Pr2 consumed power by the fuel compressor (kW)

Subscripts
CH4 methane
CO carbon monoxide
CO2 carbon dioxide
N2 nitrogen
O2 oxygen
H2 hydrogen
H2O water (gas)

i
h
c
fi
E
T
p
t
S
f
m

S
i
t
c
w
h
s

i state i
j gas species j

ts simplicity and robustness [11–13]. However the SOFC/MGT
ybrid system is a complex coupling nonlinear system, which
an hardly be solved by the conventional PID controller with
xed parameters. Thus here, the self-learning ability of the OIF
lman neural network is used to tune the PID parameters on-line.
he coupling is treated as an exterior disturbance, so the pro-
osed controller is used to eliminate disturbance and improve the
racking performance. A power mathematical model of a 220 kW
OFC/MGT hybrid system is used to generate the data required
or the training and prediction of the OIF Elman neural network

odel.
This paper is outlined as follows: Section 2 briefly describes the

OFC/MGT hybrid power system. In Section 3, a power mathemat-
cal model of the hybrid system is built with MATLAB to imitate

he real 220 kW SOFC/MGT system. An adaptive PID decoupling
ontrol strategy based on the modified OIF Elman neural net-
ork is presented for power decoupling control of the SOFC/MGT
ybrid system in Section 4. The responses of the SOFC/MGT hybrid
ystem to certain load changes are studied in Section 5. Conclu-
Fig. 1. Structure diagram of SOFC/MGT hybrid power system.

sions and suggestions for future work are finally made in Section
6.

2. Description of SOFC/MGT hybrid power system

The heart of the SOFC/MGT hybrid power system is the inter-
nal reforming SOFC (IR-SOFC) stack, which is designed here on the
basis of the tubular technology pioneered by Siemens Westing-
house in the 1970s [14]. In order to avoid excessive thermal stresses
in the stack, the SOFC operating temperature requires preheating
the fuel and air streams. Thus, it is mandatory to use heat exchang-
ers that can transfer the high thermal energy rates of SOFC outlet
streams increasing the air and fuel inlet temperature. The steam
needed to support the internal reforming reaction is obtained by
re-circulating part of the anode outlet stream, which should be
controlled to supply sufficient steam to meet the steam and carbon
ratio. Therefore, a pressurized SOFC/MGT hybrid power system is
designed in this paper, shown in Fig. 1. It consists of an anode recir-
culation SOFC and a micro gas turbine. The operation process of the
SOFC/MGT hybrid system has been described in the Ref. [25].

3. Power mathematical model of SOFC/MGT hybrid power
system

Certain assumptions are made in developing the dynamic model
for the SOFC/MGT hybrid generation system. These assumptions are
all valid from an analytical modeling point of view.

• Gas mixtures are resolved for CH4, CO, CO2, H2, H2O, N2, and O2.
All other species are assumed negligible for thermodynamics.

• Both air and fuel are assumed as the ideal gas, which makes them
satisfy the ideal gas state equation.

• There is surplus oxygen available for complete combustion due
to the fact that air mass flowrate is much larger than the fuel mass
flowrate in the burner.

• No heat transfer to the environment. The system is assumed to
be well insulated from the environment.

• Each cell in the stack is assumed to operate identically, so that
a single SOFC simulation is taken as representative and used to
calculate full stack performance.

• Control volumes are characterized by a single lumped tempera-
ture, pressure, and species mole fractions condition.
3.1. Valve and mixer model

In order to supply steam for the reforming process, a certain part
of the anode exhaust gas must be recycled. The valve is used for the
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ontrol of fuel and gas flows. It is adiabatic and fluid inertia is not
onsidered. Flowrate and molar composition of the input and the
utput are set equal at any load. In the mixer, the amount of steam
upplied to the pre-reformer is determined by the steam carbon
atio �sc, defined as the ratio between the supplied steam to the
ell and the supplied methane.

.2. Pre-reformer model

The supplied fuel is reformed to hydrogen and carbon monoxide
y fuel reforming reaction (Eq. (1)) and water-gas shifting reaction
Eq. (2)) in the pre-reformer.

H4 + H2O ↔ CO + 3H2 (1)

O + H2O ↔ CO2 + H2 (2)

herefore, the energy balance for the pre-reformer is given by:

re · dT9

dt
=

∑
i

(W8 · x8,i · h8,i) −
∑

i

(W9 · x9,i · h9,i) + Qr + Qs (3)

here Cre is the heat capacity of reformer, Qr and Qs the consumed
eat by the reforming reaction Eq. (1) and the shifting reaction Eq.
2), which can be calculated as follows:

r = rre,1 · (h̄9,CO + 3h̄9,H2 − h̄8,H2O − h̄8,CH4 ) (4)

s = rre,2 · (h̄9,CO2 + h̄9,H2 − h̄8,H2O − h̄8,CO) (5)

Under the ideal gas supposition, the partial molar enthalpy h̄j,i

s calculated by the formulation:

¯
j,i = h̄i,0 +

∫ Tj

Tref

cj,i(T) dT (6)

here j = 1, 2, · · · , 16, i ∈{CH4, CO, CO2, H2, H2O, O2, N2}. hi,0 is
he standard enthalpy of gas i, and Tref is the reference temperature
=298 K). The specific heat cj,i of gas i can be obtained from Ref. [15].

.3. IR-SOFC model

There are three chemical reactions considered in the SOFC stack.
hese reactions are the methane reformation reaction (Eq. (1)),
ater-gas shift reaction (Eq. (2)), and electrochemical reaction (Eqs.

7) and (8)).

2 + O2− → H2O + 2e− (7)

1
2 O2 + 2e− → O2− (8)

Therefore, to calculate the SOFC stack temperature, three heat
ources should be determined, namely: (i) heat consumed by the
eforming reaction Q1; (ii) heat consumed by the shifting reaction
2; (iii) heat generated due to the electrochemical reaction in the
OFC stack Q3. Assuming that temperature is uniform in a stack, the
nergy balance equation for the SOFC can be expressed as:

s · dTs

dt
= W4 ·

∑
j

(x4,j · h̄4,j) + W9 ·
∑

i

(x9,i · h̄9,i)

− W5 ·
∑

j

(x5,j · h̄5,j) − W10 ·
∑

i

(x10,i · h̄10,i) − Pst (9)

∑

+

k

Qk (9)

here k = 1, 2, 3, i ∈{CH4, CO, CO2, H2, H2O}, j ∈{N2, O2}, Cs is the
tack heat capacity.
urces 196 (2011) 1295–1302 1297

The mass balance for the SOFC is described as follows:

p10Van

RTs

dx10,i

dt
= W9,i − W10,i + R̄r,i + R̄an,i (10)

p5Vca

RTs

dx5,j

dt
= W4,j − W5,j + R̄ca,j (11)

where

Rr = [ −r1 r1 − r2 r2 3r1 + r2 −r1 − r2 ] (12)

Ran = [ 0 0 0 −r3 r3 ] (13)

Rca = [ 0 −0.5r3 ] (14)

The reaction rate of hydrogen corresponding to the electro-
chemical reaction r3 is directly related to the current i, which is
given in Eq. (15):

r3 = i · N

2F
(15)

Taking into account ohmic, concentration and activation losses,
applying Nernst’s equation and Ohm’s law, the stack output voltage
can be obtained according to Refs. [16–18].

The output power of the SOFC stack Pst can be obtained by the
equation:

Pst = i · vst (16)

The power conditioning unit is the interface between the SOFC
output DC voltage and the AC grid, which consists of a DC/DC
converter and a DC/AC inverter. Assuming the DC/DC and DC/AC
conversion efficiencies are �dc and �ac respectively, the SOFC output
power is given by:

Pac = Pst · �dc · �ac (17)

3.4. Burner model

In the catalytic combustion burner, the residual fuels from the
SOFC are burned away which increases the temperature of the gas.
The following reactions are being considered during the combus-
tion:

2H2+O2 → 2H2O (18)

2CO+O2 → 2CO2 (19)

The temperature of the product gas can be determined from:

Cb · dT13

dt
=

∑
i

(W5 · x5,i · h̄5,i + W12 · x12,i · h̄12,i) +
∑

j

Qj

−
∑

i

W13 · x13,i · h̄13,i (20)

where, i ∈{CO, CO2, H2, H2O, O2, N2}, j ∈{H2, CO}, Qj is the combus-
tion heat of H2 and CO respectively.

3.5. Heat exchanger model

Compact heat exchangers are often used in recuperated gas
turbine cycles. As one kind of compact heat exchanger, plate-fin
heat exchanger is chosen in this model. The dynamics of the heat
exchanger are described in Ref. [19].

3.6. Compressor model
The compressor map is based on a DLR centrifugal compressor
map, while the turbine map is for a NASA-CR-174646 axial turbine
[20]. The original and smoothened data files of these turbomachines
are obtained from the manufacturers. According to the similarity
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Fig. 2. SOFC/MGT hybrid po

heory, the features of the compressor can be described as a func-
ion of the pressure ratio, reduced mass flow, reduced speed and
fficiency.

When the operational point is located, pressure ratio, isentropic
fficiency and flowrate are known, the exit temperature T2 of the
ir compressor can be expressed as follows:

2 = T1 + T1

�r
· (ε(r1−1)/r1

r − 1) (21)

here adiabatic coefficient r1 can be obtained from Ref. [21].
The consumed thermal power by the air compressor, Pr1, can be

alculated from the following equation:

r1 = W1 · (h̄2 − h̄1) (22)

.7. Turbine model

The compressor and gas turbine are assumed to be coupled on
single shaft. As a consequence, they have the same rotor speed.
he maps are used to calculate the pressure ratio and isentropic
fficiency as a function of mass flowrate and rotor speed .The ideal
emperature of the working fluid at the outlet of the turbine can be
valuated using Eq. (23).

15 = T14 − T14 (1 − ε1−n14/n14
t ) �t (23)
The turbine work can be calculated from the real enthalpy
hange and the flowrate, which is expressed as follows:

t = W14 · (h̄14 − h̄15) (24)
ystem model in SIMULINK.

3.8. Shaft model

A shaft model accounts for the dynamics of the rotating mass in
the gas turbine system, which is modeled as follows:

dn

dt
= 900

n��2
· PMGT (25)

where � is the moment of inertia. Neglecting the generator mechan-
ical loss, the output mechanical power from the gas turbine PMGT is
defined in the following equation:

PMGT = �m · Pt − Pr1 − Pr2 (26)

The power mathematical model replaces the real SOFC/MGT
hybrid power system to generate the simulation data required for
the identification of the modified OIF Elman neural network model.
For the SOFC/MGT dynamic physical model, the SOFC output power
and MGT output power are the controlled variables, fuel flowrate
and air flowrate are chosen as manipulated variables, and the load
current is considered as a disturbance. The SOFC/MGT hybrid power
system model developed in MATLAB is shown in Fig. 2. The param-
eters of the SOFC/MGT hybrid system are given in Table 1.

4. Power decoupling control of SOFC/MGT hybrid power
system

4.1. Power control strategy

The structure for the power decoupling control of the SOFC/MGT

hybrid system is shown in Fig. 3, which combines the modified OIF
Elman neural network and the PID controller.

In Fig. 3, m = 1, 2, rm(k) is the reference power (SOFC out-
put power and MGT output power), ym(k) the real output power,
ymm(k) the modified OIF Elman neural network identification
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Table 1
Setting parameters used in the model of SOFC/MGT hybrid system.

Parameter Unit Value

Cell number N – 1152
Active area A cm2 834
DC/DC conversion efficiency �dc – 97%
DC/AC conversion efficiency �ac – 97%
Compressor pressure ratio εr – 2.9
Compressor isentropic efficiency �r – 78%
Turbine isentropic efficiency �t – 82%
Steam/Carbon ratio �sc – 2.5
Turbine mechanical efficiency �m – 94%
Moment of inertia � kg m2 0.00127
Stack heat capacity Cs J K−1 471

Fig. 3. Power decoupling controller structure of the SOFC/MGT system.

Fig. 4. Structure of OIF Elm
urces 196 (2011) 1295–1302 1299

power, em(k) the error between the given value rm(k) and output
ym(k) in every instant, um(k) the manipulated variable. According
to the error em(k), the modified OIF Elman neural network identi-
fication model is used to tune the parameters of the conventional
PID controller to keep the system stable. For two inputs and two
outputs system, the coupling effect from the second loop is treated
as exterior disturbance to the first main loop. At the same time,
the coupling effect from the first loop is treated as exterior distur-
bance to the second main loop. Thereby, the PID controller based
on the modified OIF Elman neural network is used to eliminate
disturbance and improve the tracking performance.

4.2. Modified OIF Elman neural network model

The following NARX model is used to describe the controlled
power system:

y(k) = f [y(k − 1), ..., y(k − ny), u(k − 1), ..., u(k − nu)] (27)

where y is the SOFC output power and MGT output power, u is
the fuel flowrate, air flowrate and current, ny and nu are the lags
of the output and input respectively, and f( · ) is a nonlinear func-
tion. In this section, we adopt a modified OIF Elman neural network
identification model to identify the nonlinear function f( · ).

The OIF Elman neural network is a type of recurrent neu-
ral network, which has two particular layers called the context
layer and the context 2 layer besides the conventional input,
hidden and output layers. The context layer and context 2 lay-
ers are used to memorize the former values of the hidden and
output layer nodes respectively. The feed-forward connections

are modifiable, whereas the recurrent connections are fixed.
The structure of OIF Elman neural network is shown in Fig. 4
[22].

In Fig. 4, wu is the weight between the input layer and hidden
layer, wy is the weight between the hidden layer and the output

an neural network.
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ayer, wc is the weight from the context layer to the hidden layer,
nd wyc is the weight from the context 2 layer to the hidden layer.
c(k) and x(k) are the outputs of the context unit and the hidden
nit respectively. yc(k) and ym(k) are the outputs of the context 2

ayer and output layer respectively. ˛ and � are the feedback gains
f the self-connections of context and context 2 layers respectively,
≤ ˛ < 1, 0 ≤ � < 1.

The mathematical model of the OIF Elman neural network is
escribed as follows:

(k) = f (wcxc(k) + wuu(k − 1) + wycyc(k)) (28)

c(k) = ˛ · xc(k − 1) + x(k − 1) (29)

c(k) = � · yc(k − 1) + y(k − 1) (30)

m(k) = g(wyx(k)) (31)

here g(x) is often taken as a linear function, and f(x) is often taken
s a sigmoid function, namely:

(x) = 1
1 + e−x

(32)

The standard Elman network usually adopts BP algorithm to
rain the network’s weights, however it is easy to get locked into
ocal minima [23]. Therefore, here an improved particle swarm
ptimization is adopted to train the weights of the OIF Elman neural
etwork [24]. The main steps can refer to the optimization process
f Ref. [25].

.3. Self-tuning PID decoupling control based on modified OIF
lman model

The digital incremental PID control algorithm is adopted here,
hich is expressed as follows:

m(k) = um(k − 1) + kpmxm(1) + kimxm(2) + kdmxm(3) (33)

here

m(1) = em(k) − em(k − 1) (34)

m(2) = em(k) (35)

m(3) = em(k) − 2em(k − 1) + em(k − 2) (36)

here kpm, kim and kdm are the proportional factor, integral factor
nd differential factor respectively.

Define the performance index Hm as follows:

m(k) = 1
2

[em(k)]2 = 1
2

[rm(k) − ym(k)]2 (37)

Adopting the gradient descent method, kpm, kim and kdm are
djusted as per the following:

pm(k) = kpm(k − 1) − �p
∂Hm

∂kpm
= kpm(k − 1) + �pem(k)

∂ym

∂um
xm(1)

(38)

im(k) = kim(k − 1) − �i
∂Hm

∂kim
= kim(k − 1) + �iem(k)

∂ym

∂um
xm(2)

(39)

dm(k) = kdm(k − 1) − �d
∂Hm

∂kdm
= kdm(k − 1) + �dem(k)

∂ym

∂um
xm(3)

(40)
here �p, �i and �d are the proportion, integral and differential
earning rate respectively, ∂ym/∂ um is the Jacobian information of
ontrolled object, which can be obtained from the above modified
IF Elman identification results, i.e. ∂ ym/∂ um ≈∂ymm/∂ um.
Fig. 5. Response of the SOFC/MGT output power during +15% step change.

5. Simulation

In this section, we present numerical experiments to validate
the proposed adaptive PID decoupling control scheme based on the
modified OIF Elman identification model of the SOFC/MGT hybrid
system.

From the above mentioned Sections 2 and 3, firstly, based on the
mass balance and enthalpy balance equations, the power mathe-
matical model of the SOFC/MGT hybrid system described in Section
2 is built with MATLAB to imitate the real 220 kW SOFC/MGT hybrid
system in Section 3. With the mathematical model, the training data
for the modified OIF Elman neural network model is generated. In
order to obtain available identification data, the input signals of
the power physical model are uniformly random, including the fuel
flowrate, air flowrate and the current. A set of 600 data is collected
from the simulation. The first 400 data are used for the identifica-

tion of the modified OIF Elman neural network identification model,
while the remaining 200 data are used for validation purposes.

In this study, Kolmogorov theorem is used to determine the
number of hidden node, and is given as 2r + 1, where r is num-
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[11] R. Kumar, R.A. Gupta, B. Singh, IEEE International Conference on Information
Fig. 6. Response of the SOFC/MGT output power during −15% step change.

er of input units. There are three inputs (air flowrate W1, fuel
owrate W6 and current i). So, the hidden layer of the modified
IF Elman neural network is calculated to be 7 nodes. Here, the

mproved PSO algorithm is applied to obtain the weights of the
IF Elman neural network. Therefore, each particle consists of
× 7 + 7 × 2 + 7 × 7 + 2 × 7 parameters, and all weights are chosen
n the interval [−1, 1]. The parameters of the improved PSO algo-
ithm are set as follows: swarm size m is 40, maximum number of
terations Gmax is 200, accelerating factors c1 and c2 are 1.8, maxi-

um inertia weight �max is 0.9, minimum inertia weight �min is
.1, step size of the inertia weight 
� is 0.05. Using MATLAB to
un the program of the modified OIF Elman model and after 200
terations, the optimal weights of OIF Elman can be determined.

Based on the modified OIF Elman neural network model, the

daptive PID decoupling controller is used to control the power
f the SOFC/MGT hybrid system. Firstly assume that the external
oad of the SOFC/MGT hybrid system has a +15% step change at
000 s. The simulation time is 3000 s, and the sampling time is 0.1 s.

[

[

urces 196 (2011) 1295–1302 1301

The proportion, integral and differential learning rate are �p = 0.09,
�i = 0.3 and �d = 0.2 respectively. The PID parameters kp, ki and kd
are adjusted by self-learning modified OIF Elman neural network
until the error approach zero. The simulation results are shown in
Fig. 5. The output power of the SOFC/MGT hybrid system tracts and
decouples the reference power satisfactorily, which is shown in
Fig. 5(a). The maximum error of the output power is 1.02%, and the
mean steady-state error is 0.03%. The response of the SOFC output
power and the MGT output power are shown in Fig. 5(b). The spe-
cific change of the SOFC from 1001 s to 1101 s is shown in Fig. 5(c).
In order to compare with the traditional PID control, now assum-
ing the external load of the SOFC/MGT hybrid system has a −15%
step change at 20 s, the simulation results are shown in Fig. 6. From
Fig. 6, the traditional PID controller is incapable of controlling the
output power to the target value. However, using the improved
PID decoupling control method, the SOFC/MGT output power can
effectively tract the reference power. The maximum error of the
output power is 1.58%, and the mean steady-state error is 0.06%. In
addition, as the SOFC output power is the core output power of the
hybrid system, the variation curve of the SOFC/MGT output power
is similar to the SOFC output power.

6. Conclusions

In order to allow the SOFC/MGT hybrid power system to deliver
the desired power output, this paper employs an adaptive PID
decoupling controller based on a modified OIF Elman neural net-
work identification model to control the SOFC output power and
MGT output power. The data required for the training and pre-
diction of the modified OIF Elman neural network identification
model is generated from a power mathematical model of a 220 kW
SOFC/MGT hybrid power system. The simulation results show that
the proposed adaptive PID decoupling control algorithm based
on the modified OIF Elman neural network model is an efficient
method to solve the nonlinear coupling power system for the
SOFC/MGT hybrid system. In order to develop an integrated control
strategy, in the future other transient impacts besides current will
be further discussed (e.g., ambient temperature, pressure fluctua-
tions and fuel composition changes).
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